

CHAPTER 6 CARBON AND ITS COMPOUNDS

NOTES

Carbon-

- > Chemical element represented by symbol **C**.
- > Atomic number 6.
- Non-metallic and tetravalent making four electrons available to form covalent chemical bonds.
- > Belongs to group 14 of the periodic table.
- > Isotopes of Carbon are ${}^{12}C$, ${}^{13}C$ and ${}^{14}C$.

Allotropes of Carbon

Allotropes: Different forms of an element that has similar chemical properties but different physical properties are known as **Allotropes**.

Allotropes of carbon - diamond, graphite and fullerene.

Diamond

- Three-dimensional network with strong carbon-carbon covalent bonds.
- > Hard in nature with high melting point $(3500^{\circ}C)$.
- > Shines in presence of light and it is a bad conductor of electricity.
- > Used in making jewellery, cutting and drilling tools.

Graphite

- Each carbon atom is bonded with other three carbon atoms to form hexagonal networks.
- > Good conductor of heat and electricity.
- Soft and greasy to touch
- > Used as dry lubricant for machine parts and as pencil lead.

Fullerene

- > Designed by US architect Buckminster Fuller
- Sixty carbon atoms are arranged in the shape of a football.

Fig.1. Structure of diamond

Fig.2. Structure of graphite

Fig.3. Structure of Fullerene

Catenation- the property of carbon by which carbon atoms can link one another via covalent bond and can form long chains, closed ring or branched chains etc. Carbon atoms can be linked by single, double or triple bonds.

 $\mbox{Hydrocarbons}$ - compounds of carbon and hydrogen. For example, Ethane, $C_2 H_6$

Types:

- 1. Saturated hydrocarbons
- 2. Unsaturated hydrocarbons

Saturated Hydrocarbons

Fig.4. Electron dot and cross structure of Ethane as well as open structure

Saturated Hydrocarbons consist of single bonds between the carbon atoms. They are also known as Alkanes. Alkanes are represented by a formula, C_nH_{2n+2} where n = 1,2,3...etc. Some important alkanes are

Methane - CH_4 Ethane - C_2H_6 Propane - C_3H_6 Butane - C_4H_{10}

Pentane - C_5H_{12} Hexane - C_6H_{14}

Homologous series: Alkanes when arranged in order of increasing molecular mass constitute a series

in which any two consecutive alkanes differ by CH_2 . Such series is known as homologous series.

Structural isomers: Compounds with the same molecular formula but different structure are called structural isomers. **e.g.** the two structures of C_4H_{10} are

(i) CH₃CH₂CH₂CH₃ and CH₃ (ii) CH₃CHCH₃

Cycloalkanes: Hydrocarbons which have carbon atoms in the form of a ring.

General formula representing cycloalkanes is C_nH_{2n} .

Name	Molecular Formula	Structural Formula	Line Formula
Cyclopropane	C ₃ H ₆	H,C CH, ME	EDACATION
Cyclobutane	C ₄ H ₈	H ₂ C-CH ₂ H ₂ C-CH ₂	
Cyclopentane	C5H10	H ₂ C ^C H ₂ C ^C H ₂ C ^C H ₂ C ^C H ₂ C ^C	\bigcirc
Cyclohexane	C ₆ H ₁₂	$\begin{array}{c} H_2 H_2 \\ C - C \\ H_2 C \\ C - C \\ H_2 C \\ C + C \\ C + C \\ H_2 \\ H_2 \\ H_2 \end{array}$	\bigcirc

Unsaturated hydrocarbons

Unsaturated hydrocarbons consist of a double or a triple bond between two adjacent carbon atoms.

- Alkenes- hydrocarbons having at least one double bond between two adjacent carbon atoms .Its general formula is C_nH_{2n}. E.g. Ethene, C₂H₄
- Alkynes hydrocarbons which contain a carbon-carbon triple bond. Its general formula is $C_nH_{2n-2}E.g.$ Ethyne, C_2H_2
- Aromatic hydrocarbons- ring-shaped hydrocarbons that contain delocalized pi electrons. They are relatively stable .e.g. Benzene, C₆H₆

0		
Molecular formula 🚫	Structure	Name
C ₂ H ₄	$CH_2 = CH_2$	Ethene
C_3H_6	CH ₃ -CH=CH ₂	Propene
C ₄ H ₈	(i)CH ₂ =CH-CH ₂ -CH ₃	But-1-ene
	(ii)CH ₃ -CH=CH-CH ₃	But-2-ene

Homologous series of alkenes:

Isomerism in alkene

Position isomers- compounds having the same carbon chain but differ in the position of double bond

For example :Butene

1	2	3	4	1	2	3	4
CH	2=CH	I-CH	2-CH3	CH	I ₃ -CF	I=CI	H-CH ₃
But	: -1-ei	ne (1	-Butene)	Bu	t-2-e	ne (2	-Butene)
	(ล))				(b)	

The two structures of butene have the same carbon chain but differ in the position of carbon-carbon double bond. In (a) the double bond lies between C_1 and C_2 and in (b) the double bond lies between C_2 and C_3 . Hence butene shows position isomers

Structural isomers – compounds having the same molecular formula but showing different structures of carbon chains.

	CH_3
For example-butene, C ₄ H ₈	
CH ₂ =CH-CH ₂ -CH ₃	CH ₃ -C=CH ₂
1-Butene	isobutene

In the above, 1-Butene and isobutene have the same molecular formula but structures of carbon chains are different. So they are structural isomers. Hence butene can show structural isomerism also.

கரியில்கான மூச நதுயூலன் (மூல) Department Of Education (S)

Government of Manipur

Homologous series of alkynes

Formula	Structure	Name
C ₂ H ₂	$H-C \equiv C - H$	Ethyne
C ₃ H ₄	$CH_3-C\equiv C-H$	Propyne
C ₄ H ₆	$(\mathbf{i})\mathbf{H}\mathbf{-}\mathbf{C}\equiv\mathbf{C}-\mathbf{C}\mathbf{H}_2-\mathbf{C}\mathbf{H}_3$	But-1-yne
	$\mathbf{(ii)CH_3-C} \equiv \mathbf{C} - \mathbf{CH}_3$	But-2-yne

Petroleum

- > Dark coloured viscous liquid found deep in the earth's crust
- Mixture of hydrocarbons along with some oxygen, sulphur and nitrogen containing compounds.
- Formed by the decay and decomposition of marine animals as well as that of plant materials of the prehistoric forests.
- > Due to prolonged action of high pressure and high temperature in the interior of the earth for ages the organic matter decomposed into petroleum.
- > Petroleum is pumped out through the deep wells bored into the crust.
- > Crude petroleum is separated by fractional distillation.
- Products of petroleum are gas, gasoline or petrol, kerosene, gas oil, diesel oil, lubricating oil, Vaseline, paraffin wax and asphalt.

Functional groups:

Heteroatoms and the group attached to the hydrocarbon part forms a stable molecule characterise the specific properties of the compound irrespective of the nature and length of the carbon chain. Such groups are called functional groups.

Table-2. Examples of functional groups of Carbon compounds.

Heteroatoms	Functional group	Formula	Compound	Name
Cl/Br/I	Halo-(Chloro/Bromo/Iodo)	-Cl, -Br, -I	CH ₃ Cl	
			Chloromethar	ne
	Yan	105	CH ₃ Br	
	्र राम	$TH \sim 1$	Bromomethar	ne
			CH ₃ CH ₂ I	Iodoethane
Oxygen	i) Alcohol (-ol) (hydroxyl)	-OH	CH ₃ OH	Methanol
		- 22	C ₂ H ₅ OH	Ethanol
		THE THE DOM	OF	
	ii) Aldehyde (-al) (formyl or	-CHO	HCHO	Methanal
	aldehyde)	ARITOFN	CH ₃ CHO	Ethanal
	iii) Ketone (-one)	≴-CO-	CH ₃ -CO-CH ₃	Propanone
	iv) Carboxylic acid (-oic acid)	-COOH	HCOOH	Methanoic
	Character and the second		acid	
			CH ₃ COOH	Ethanoic
			acid	
			(Acetic acid)	

Nomenclature of Carbon compounds

1. Word root: Denoted by the number of carbon atoms present in the main chain of the molecule.

Chain length	Word Root
C ₁	Meth-
C ₂	Eth-
C ₃	Prop-

2. Suffix:

(i) A primary suffix is added to the word root to indicate whether the carbon chain is of single bonds or C-C multiple bonds.

Organic compound	Word Root	Primary Suffix	Name
CH ₃ CH ₂ CH ₃	Prop	-ane	Propane
CH ₃ CH=CH ₂	Prop	-ene	Propene
CH ₃ -C ≡CH	Prop	-yne	Propyne

(ii) A secondary suffix is added to the primary suffix to indicate the nature of functional group present in the molecule.

Functional group	Secondary Suffix
-СООН	-oic acid
-СНО	-al
-CO-	-one
-OH	-ol
	-COOH -CHO -CO- -OH

3. Prefix:

(i) Distinguishes open chain compound from ring compounds.

Example: $CH_2 - CH_2$ is Cyclo + but + ane = Cyclobutane $CH_2 - CH_2$ (primary prefix) (word root) (primary suffix) (name)

(ii) Secondary prefix: It is substitute of functional group and added immediately before the word root or primary prefix.

Group	Secondary prefix	Example	Name
-F	Fluoro	CH ₃ F	Fluoromethane
-Cl	Chloro	CH ₃ CH ₂ Cl	Chloromethane

1C)

Complete name of an organic compound in the IUPAC consists of the following parts: Secondary prefix + primary prefix + word root + primary suffix + secondary suffix

Chemical Properties of Carbon Compounds

Combustion

Carbon along with its compound is used as a fuel as it burns in presence of oxygen to release energy.

$$C + O_2 \longrightarrow CO_2 + Energy$$

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O + Energy$

Oxidation

Oxidation may be defined as the addition of oxygen or removal of hydrogen from a carbon compound. Potassium permanganate, KMnO₄ and acidified K₂Cr₂O₇ are oxidising agents.

Ethanol can be oxidized to aldehydes which in turn can be produces to carboxylic acid.

i) $CH_3CH_2OH + [O]$ alk. $KMnO_4$ $CH_3CHO + H_2O$ Ethanol Ethanal ii) $CH_3CHO + [O]$ alk. KMnO₄ CH₃COOH Ethanoic acid

Addition Reaction

(i)Hydrogenation (addition of hydrogen): Unsaturated hydrocarbons add hydrogen in presence of catalyst like nickel to form saturated hydrocarbons. Thus ethene adds a molecule of hydrogen to form ethane.

Example, $CH_2 = CH_2 + H_2$ Ni cat. $CH_3 - CH_3$ Ethene Ethane

This reaction is commonly used in the hydrogenation of vegetable oils (contain unsaturated carbon chains) to give vegetable ghee.

Bromination (Halogenation): This reaction is used as a test for the unsaturated organic (iii) compounds (presence of double or triple bonds)

Example: On treatment with bromine water, ethene adds a molecule of bromine to form dibromoethane.(orange colour of bromine water is discharged during the reaction)

 $CH_2 = CH_2 + Br_2$ (water) CH₂Br - CH₂Br

Ethene

1.2-dibromoethane

(iv)Addition of Hydrobromic acid: Ethene readily reacts with hydrobromic acid HBr to produce bromoethane.

CH₃CH₂Br $CH_2 = CH_2 + HBr(aq)$ • Ethene Bromoethane

Substitution Reaction

When one atom in hydrocarbon is replaced by chlorine, bromine, etc. this reaction is known as Substitution Reaction.

新聞前日本語で 団を 万原語でので (町での) **DEPARTMENT OF EDUCATION (S)** Government of Manipur

Example, $CH_4 + Cl_2$	diffuse sunlight	CH ₃ Cl	+ HCl
Methane		Chlorome	thane
$CH_3 Cl + Cl$ diffuse sunlight	$CH_2 \ Cl_2$	+ HCI	
	Dichlorometha	ne	
$CH_2 Cl + Cl_2 \xrightarrow{\text{diffuse sunlight}}$	$CH_2 \ Cl_3$	+ HC	ĽI
	(Trichiorometh	ane chlorofo	orm)
$CHCl_2 + Cl_2 \xrightarrow{\text{diffuse sunlight}}$	CCl_2	+ HO	CI
	(Trichiorometh	ane chlorofo	orm tetrachloride)

Important Carbon Compounds: Ethanol and Ethanoic Acid

Ethanol (Ethyl alcohol) is a volatile liquid with a boiling point of 78^oC. It reacts with sodium to form sodium ethoxide.

Example, $2CH_3CH_2OH + 2Na \longrightarrow 2CH_3CH_2ONa + H_2$

Dehydration of ethanol in presence of hot sulphuric acid forms alkene.

 $\begin{array}{ccc} CH_{3}CH_{2}OH & \underline{Conc.H_{2}SO4} & CH_{2} = CH_{2} + H_{2}O \\ Ethanol & 170^{\circ}C & Ethene \end{array}$

Ethanoic acid is a colourless liquid. When pure ethanoic acid converted into like ice solid, it is known as **Glacial Acetic Acid**. It is formed at a temperature of about 16.6 $^{\circ}0$

Ethanoic Acid/Acetic acid when reacts with ethanol it forms an ester, ethyl acetate. Ester is aa sweetsmelling liquid and it is used in making perfumes.

 H^+ CH₃COOH CH₃CH₂OH \rightarrow CH₃COOC₂H5 ++H₂O Ethanoic acid Ethanol Ethyl acetate(ester) EDUCATION (S) E THE REAL (TOW)