

ന്ന്ന് സ്കാഷംപങ്ങള് മംലംപ്പംപ്പും പ്രംപ്പം പ്രംപ്പും പ്രംപ്പും പ്രംപ്പും പ്രംപ്പും പ്രംപ്പും പ്രംപ്പും പ്രംപ്പ DEPARTMENT OF EDUCATION (S) Government of Manipur

CLASS - X**HIGHER MATHEMATICS** CHAPTER – 1 **BINARY OPERATIONS**

- **Binary operation**: Let A be any non- empty set. Then, a function $*: A \times A \rightarrow A$ is called a binary \geq operation or binary composition or an internal composition on the set A.
- **External binary operation**: Let A and S be any non- empty sets. Then, a function is*: $A \times S \rightarrow S$ called an external binary operation on S over A.
- **Algebraic Structure** \geq

A set equipped with one or more binary operations (internal or external) is known as an algebraic structure.

Note: Let * be any operation on a non-empty set A, then * is called binary operation on A, if $a * b \in A$, for every $a, b \in A$. It is called **closure law** and we say that 'A is closed with respect to * or "A satisfies closure law with respect to * '.

Associativity and Commutativity \geq

Let * be a binary operation on a non-empty set A, then

- (i) * is called **commutative**, if a * b = b * a, for every $a, b \in A$.
- (ii) * is called **associative**, if (a * b) * c = a * (b * c), for every $a, b, c \in A$.
- \succ **Identity Element**

For an algebraic structure (A, *), an element $e \in A$ (if it exists) is called an identity element, if The FATTON (S) a * e = e * a = a, for every $a \in A$.

Inverse of an Element

Let * be a binary operation on a non-empty set A and let $e \in A$ be the identity element of * on A. Then, an element $a \in A$ is called invertible (or inversible), if there exists an element $b \in A$ such that a * b = b * a = e. The element b is called the inverse of a and it denoted as a^{-1} .

Distributivity >

Let * and \circ be two binary operations on a set A. Then, * is distributive over \circ , if $a^{*}(b \circ c) = (a^{*}b) \circ (a^{*}c)$ (left distributive law)

and $(b \circ c) * a = (b * a) \circ (c * a)$, (right distributive law) for every $a, b, c \in A$.

Theorem: The identity element for an algebraic structure, if it exists, is unique.

- > **Theorem**: If (A, *) is an algebraic structure with identity, in which the binary operation * is associative, then the inverse of an element of A, if it exists, is unique.
- Theorem: Let (A, *) is an algebraic structure with identity, in which the binary operation * is associative. If *a* and *b* are two invertible elements of *A*, then a*b is also invertible and $(a*b)^{-1} = b^{-1}*a^{-1}$.

> Subsets closed under a binary operation

Let * be a binary operation on a set A and H be a subset of A. Then, H is said to be closed under *, if for every pair $(a,b) \in H \times H \Rightarrow a^*b \in H$.

Composition Table (or Operation Table)

Let *A* be a non-empty set and let * be an operation on *A*. Then, we can completely describe the operation with the help of a table called *composition table* (or *operation table*). Let $A = \{a_1, a_2, ..., a_n\}$ be a finite set and * be an operation on *A*. Then we can construct composition table as given below:

* 6	a_1	<i>a</i> ₂		a_i	c · ·	a_n	
a_1	$a_1 * a_1$	$a_1 * a_2$	÷	$a_1 * a_i$	• • •	$a_1 * a_n$	
a_2	$a_{2} * a_{1}$	$a_{2} * a_{2}$		$a_{2} * a_{i}$		$a_2 * a_n$	
-		•			· · ·	þ	
· C	21	· []		-7		9	
	~						
a_i	$a_i * a_1$	$a_i * a_2$		$a_i * a_i$		$a_i * a_n$	
·						•	
	. ' 9			•	5	•	
•	·	.0.5	TT	A.P.	~ _		
a_n	$a_{n} * a_{1}$	$a_n * a_2$		$a_n * a_i$		$a_n^*a_n$	ON
1					TOMOTE	Conto	ATIO
				TTOF	SALLO OF		

- The elements of the left-most column are called heads of the corresponding rows.
- The elements of the top-most row are called heads of the corresponding columns. We can infer the following result from the composition table:
 - (i) * is a binary operation if all the entries of the table belong to the set A.
 - (ii) * is commutatve if the composition table is symmetric about the diagonal joining the upper left corner and the lower right corner.
 - (iii) An element $e \in A$ is the identity element if the row headed by e coincides with the topmost row and the column headed by e coincides with the left-most column.
 - (iv) Let $e \in A$ be the identity element. If e appears in the entry of the table (except the topmost row and the left-most column), then the heads of that particular row and column are **invertible** and are inverses of each other.

(നംന്ന) ഇറംങ്ങളു ടുമ്പ ഇം എം എന്നി ജ DEPARTMENT OF EDUCATION (S)

Government of Manipur

Some Special Operations

1. Addition modulo *n*

Let *n* be a positive integer, we define the operation 'addition modulo *n*' denoted by ' $+_n$ ' as follows:

 $a +_n b$ = the least non-negative remainder when a + b is divided by n; $a, b \in Z$

For example,

 $2 +_6 5 =$ the least non-negative remainder when 2 + 5 *i.e.* 7 is divided by 6

= 1

2. Multiplication modulo *n*

Let n be a positive integer, we define the operation 'multiplication modulo n' denoted by ' \times_n ' as follows:

ernme

GON

 $a \times_n b$ = the least non-negative remainder when $a \times b$ is divided by $n; a, b \in Z$.

For example,

= 4

 $2 \times_6 5$ = the least non-negative remainder when 2×5 *i.e.* 10 is divided by 6

Page | 3

JF EDUCATION (S)

ETTOCHE (TOCH)

Manipu