

新聞前台省市で WE 万万四ので (UP??) DEPARTMENT OF EDUCATION (S) Government of Manipur

## CHAPTER 5 MATRICES

## **NOTES Definition of matrix:**

A matrix of order  $m \times n$  is a rectangular array of mn numbers, arranged in m rows (horizontal) and n columns (vertical).

**Notes: 1)** A matrix is usually represented by capital letter. For instance a matrix with m rows and n columns may be written as

|     | $a_{11}$ | <i>a</i> <sub>12</sub> | <i>a</i> <sub>13</sub> | a <sub>1n</sub> |
|-----|----------|------------------------|------------------------|-----------------|
| A = | $a_{21}$ | $a_{22}$               | <i>a</i> <sub>23</sub> | a <sub>2n</sub> |
|     |          |                        |                        |                 |
| 25  | $a_{m1}$ | $a_{m2}$               | $a_{m3}$               | a <sub>mn</sub> |

2) The suffixes *i* and *j* in the element  $a_{ij}$  indicate the number of row and column in which the element occurs. The above matrix *A* is also represented by the symbol  $A = [a_{ij}]$ .

# **ORDER OF A MATRIX:**

A matrix having *m* rows and *n* columns is called a matrix of order  $m \times n$  or simply  $m \times n$  matrix.

## **Diagonal elements:**

An element  $a_{ij}$  of a matrix  $A = [a_{ij}]$  is called the diagonal element if i = j.

# **TYPES OF MATRICES:**

1. Rectangular matrix: Any matrix of order  $m \times n$  (where m is not necessarily equal to n) is called a rectangular matrix.

For example:  $\begin{bmatrix} 2 & 3 \\ -5 & 5 \\ 7 & 1 \end{bmatrix}$  is a rectangular matrix.

2. Square matrix: A matrix in which the number of rows is equal to the number of columns is called a square matrix.

Thus, any  $n \times n$  matrix is known as a square matrix of order n

or n-rowed square matrix.

For example: 
$$A = \begin{bmatrix} 1 & 2 & 3 \\ -5 & 4 & 6 \\ 0 & 9 & 7 \end{bmatrix}$$
 is a square matrix of order 3

3. Row matrix: A matrix having only one row is called row matrix.



4. Column matrix: A matrix having only one column is called a column matrix.

**For example:** 
$$B = \begin{bmatrix} 3 \\ 7 \\ 1 \end{bmatrix}$$

5. **Diagonal matrix:** A square matrix  $A = [a_{ij}]$  is said to be diagonal matrix if all its nondiagonal elements are zero. Thus  $A = [a_{ij}]_{n \times n}$  is a diagonal matrix, if  $a_{ij} = 0$  for  $i \neq j$ .

For example: 
$$A = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 7 \end{bmatrix}$$

6. Scalar matrix: A diagonal matrix whose diagonal elements are all equal, is called a scalar matrix.

For example: 
$$A = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

7. Identity matrix (or Unit matrix): A square matrix in which the diagonal elements are all 1 and the rest are all zero is called an identity matrix.

For example: 
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
,  $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ 

8. Zero matrix: A matrix is said to be zero or null matrix if all the elements are zero.

For example: 
$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
,  $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ 



(നംന്ന) ഇറംങ്ങളു ടുമ്പ മംഷംപ്പ്യങ DEPARTMENT OF EDUCATION (S) Government of Manipur

#### 9. **Triangular matrices:**

(i) Upper triangular matrix: A square matrix all of whose elements below the principal diagonal are zero, is called an upper triangular matrix.

|              | [4 | 7 | 1  |  |
|--------------|----|---|----|--|
| For example: | 0  | 2 | -3 |  |
|              | 0  | 0 | 0  |  |

(ii) Lower triangular matrix: A square matrix all of whose elements above the principal diagonal are zero, is called an lower triangular matrix.

|              | [4 | 0 | 0 |  |
|--------------|----|---|---|--|
| For example: | 3  | 2 | 0 |  |
|              | 5  | 9 | 6 |  |

## **EQUALITY OF MATRICES:**

**Definition:** Two matrices  $A = \begin{bmatrix} a_{ij} \end{bmatrix}$  and  $B = \begin{bmatrix} b_{ij} \end{bmatrix}$  are said to be equal if

- (i) they are of the same order.
- (ii) each element of A is equal to the corresponding element of B, that is

 $a_{ij} = b_{ij}$  for all admissible values of *i* and *j*.

## **OPERATION ON MATRICES:**

#### (a) Addition of matrices:

Let A and B the two matrices of the same order. Then the sum of A and B, denoted by A+B is A و . Ing elements A complete and defined as the matrix, each elements of which is the sum of the corresponding elements of A and *B*.

**Example** if

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \quad B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix}$$
  
Then, 
$$A + B = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} \\ a_{21} + b_{21} & a_{22} + b_{22} & a_{23} + a_{23} \end{bmatrix}$$

**Note:** Two matrices *A* and *B* are conformable for addition if *A* and *B* have the same numbers of rows and columns.



#### (b) Multiplication of a matrix by a scalar:

If k is a scalar and A is a matrix, then the product kA is defined as the matrix obtained on multiplying each element of A by k.

For example, if  $A = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix}$ , then for any scalar k  $kA = \begin{bmatrix} ka_1 & ka_2 & ka_3 \\ kb_1 & kb_2 & kb_3 \end{bmatrix}$ 

#### (c) Subtraction of Matrices:

If A and B are two matrices of the same order, then the difference A - B is defined as a matrix obtained by subtracting the corresponding element of B from the corresponding elements of A.

Example 
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$
 and  $B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix}$   
Then,  $A - B = \begin{bmatrix} a_{11} - b_{11} & a_{12} - b_{12} & a_{13} - b_{13} \\ a_{21} - b_{21} & a_{22} - b_{22} & a_{23} - b_{23} \end{bmatrix}$ 

Notes: 1) Matrix addition is commutative as well as associative

i.e. (i) 
$$A + B = B + A$$

(ii) (A+B)+C = A+(B+C), whenever A, B, C are matrices of same order.

2) The distributive law k(A+B) = kA + kB hold for any scalar k and A and B

are two matrices of same order.

#### (d) Multiplication of matrices

DUCATION (S) Let A and B be the two matrices such that the number of columns of A is equal to the number of rows of B. Then the two matrices A and B are said to be conformable for the product AB. And the product AB is defined only when A and B are conformable for this product. Goves

For example,

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \text{ and } B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{bmatrix}$$



னிரிம்புகூரையில் நன்குமையில் (முல) DEPARTMENT OF EDUCATION (S) Government of Manipur

Then, the product AB is defined as

$$AB = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} & a_{11}b_{12} + a_{12}b_{22} + b_{13}b_{32} \\ a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} & a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} \\ a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31} & a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32} \end{bmatrix}$$

Here, we observed that A is  $3\times 3$  matrix and B,  $3\times 2$  matrix, then the product AB is  $3\times 2$  matrix.

**Notes:** 1) If A is  $m \times n$  matrix and B,  $n \times p$  matrix, then the product AB is an  $m \times p$  matrix.

- 2) Matrix multiplication is not commutative.
  - i.e.  $AB \neq BA$
- 3) Matrix multiplication is associative:

i.e. (AB)C = A(BC); provided A, B, C are conformable for their

corresponding products.

4) Matrix multiplication holds distributive law:

A(B+C) = AB + AC; provided A, B, C are conformable for the products

and sum.

# TRANSPOSE OF A MATRIX:

Given a matrix A, then the matrix obtained from A by changing its rows into columns and columns into rows is called the transpose of A. Transpose of A is denoted by A' or A'

For example for a given matrix  $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$ 

Transpose of A i.e.  $A' = \begin{bmatrix} 1 & 3 & 5 \\ 1 & 4 & 6 \end{bmatrix}$ 

**Notes:** 1) If A is  $m \times n$  matrix then A' will be  $n \times m$  matrix.

**2**) The element in the i<sup>th</sup> row  $-j^{th}$  column of *A* i.e.  $(i, j)^{th}$  element of *A* ,becomes

the  $(j,i)^{th}$  element of A'.

JF EDUCATION (S)



#### **Theorems (Properties of transpose of Matrix):**

- If A', B' denote the transpose of A and B respectively, then
  - **i**) (A')' = A
  - ii) (A+B)' = A' + B', A, B being conformable for addition.
  - iii)  $(kA)^{\prime} = kA^{\prime}$  where k is any scalar.

iv) (AB)' = B'A' A, B being conformable for multiplication.

## **Symmetric Matrix:**

A square matrix A is said to be symmetric if A' = A i.e. if  $a_{ii} = a_{ji}$ 

For example, 
$$A = \begin{bmatrix} \sqrt{3} & 2 & 3 \\ 2 & -15 & -1 \\ 3 & -1 & 1 \end{bmatrix}$$
 is a symmetric as  $A' = A$ .

## **Skew-Symmetric Matrix:**

A square matrix A is said to be Skew-symmetric if A' = -A i.e. if  $a_{ii} = -a_{ii}$ .

For example,  $A = \begin{bmatrix} 0 & -2 & 3 \\ 2 & 0 & 1 \\ -3 & -1 & 0 \end{bmatrix}$  is a skew-symmetric as A' = -A.

Note: Every diagonal element of a skew-symmetric matrix is necessarily zero.

**Theorem:** Every square matrix can be expressed in one and only one way, as a sum of a symmetric matrix and a skew-symmetric matrix.

**Note:** If *A* be is any square matrix, then we can write

$$A = \left\{\frac{1}{2}\left(A + A'\right)\right\} + \left\{\frac{1}{2}\left(A - A'\right)\right\}.$$

= {symmetric} + {skew-symmetric}

#### \*\*\*\*\*

OF EDUCATION (S)

STITIONGHORE TO'E JATER (TO(Y))