

ന്ന്ന് സ്കാര്ഷ്യപ്പെട്ട് മുന്നു സ്കാര്യ സംസി PEPARTMENT OF EDUCATION (S) ernment of Manipur

CLASS – X MATHEMATICS CHAPTER – 3 FACTORISATION

NOTES

>**Cyclic Expression**

An algebraic expression which remains unchanged under cyclical replacement of the letters involved is called a cyclic expression.

Cyclic factors \geq

An algebraic expression is said to have cyclic factors if it has as its factors all the expressions obtained by cyclical replacement in any one of the factors.

Factorization of cyclic expressions \geq

In many cases, cyclic expressions can be factorised by using the following steps:

- 1. Write the terms of the expression according to the ascending or descending powers of one of the letters involved in the expression.
- 2. Take out the factor(s) common to each coefficient.
- 3. Write the terms of the other factor according to the ascending or descending powers of any letters other than the previous.
- 4. Repeat the process till the factorization is completed.

There are cyclic expressions which cannot be factorised by the above method (process).

Some standard results >

1.
$$a^{2}(b+c) + b^{2}(c+a) + c^{2}(a+b) + 2abc = (a+b)(b+c)(c+a)$$

- 2. $a^{2}(b-c) + b^{2}(c-a) + c^{2}(a-b) = -(a-b)(b-c)(c-a)$ 3. $a^{3}(b^{2}-c^{2}) + b^{3}(c^{2}-c^{2}) = 2a^{2}c^{2}$ 3. $a^{3}(b^{2}-c^{2}) + b^{3}(c^{2}-a^{2}) + c^{3}(a^{2}-b^{2}) = -(a-b)(b-c)(c-a)(ab+bc+ca)$ 4. $(a+b+c)^{3}-a^{3}-b^{3}-c^{3} = 3(a+b)(b+c)(c+a)$
- 5. $a^{2}(b+c) + b^{2}(c+a) + c^{2}(a+b) + 3abc = (a+b+c)(ab+bc+ca)$
- 6. $a^3 + b^3 + c^3 3abc = (a + b + c)\{a^2 + b^2 + c^2 ab bc ca\}$

$$= \frac{1}{2}(a+b+c)\{(a-b)^2+(b-c)^2+(c-a)^2\}$$

7. $2b^2c^2 + 2c^2a^2 + 2a^2b^2 - a^4 - b^4 - c^4 = (a + b + c)(a + b - c)(b + c - a)(c + a - b)$

EDUCATION (S)