

CHAPTER 6 PERMUTATIONS AND COMBINATIONS

NOTES

FACTORIAL NOTATION: The continued product of first *n* natural number is called a "factorial n" denoted by n! or |n|. Thus $n! = 1 \times 2 \times 3 \times \dots \times n$

PERMUTATION: The different arrangement in a definite order which can be made out of a given number of things by taking some or all at a time are called permutations.

Note: "P_r denotes the number of permutations of n different things taken r (\leq n) at a time and no thing is repeated.

Theorem 1: The number of permutations of *n* different things taking $r (\leq n)$ of them at a time is given by

$${}^{n}\mathbf{P}_{r}=\frac{n!}{(n-r)!}\,.$$

Theorem 2: The number of permutations of *n* things, where *p* things are of one kind, *q* things are of second kind and rest are all different is $\frac{n!}{p!q!}$.

COMBINATION: A group or a selection which can be formed by taking some or all of a number of things (irrespective of their order) is called a combination.

Note: The number of combinations of n different things taken r at a time is denoted by ${}^{n}C_{r}or\binom{n}{r}$.

Theorem: ${}^{n}P_{r} = {}^{n}C_{r} \times r!, 0 < r \le n$ (Relation between permutation and combination) **Notes:** OF EDUCATION (S)

1. ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$ 2. 0! = 1 ${}^{n}C_{r} = {}^{n}C_{n-r}$ 3. ${}^{n}C_{n}=1$ 4. ${}^{n}C_{0}=1$ 5. $\frac{1}{(-m)!} = 0$, where m is a positive integer. 6.

Theorem: ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$

ज्ञी गोविश्वस्ति ए में हे ज्ञासाल्ला (पा॰ला)

ment of Maniput

DEPARTMENT