

CHAPTER 7 VECTORS

NOTES

The physical quantities may be divided into two groups:

(i) Scalars (ii) Vectors

- (i) Scalar : A scalar is a quantity having magnitude but no direction. For example: mass, length, time, temperature, volume, density, work etc.
- (ii) Vectors : A vector is a quantity having both magnitude as well as direction. For example: force, velocity, acceleration, displacement, moment etc.

Representation of a vector:

A directed line segment from A to B represents a vector and is written as \overrightarrow{AB} . A is the initial point and B is the terminal point of the vector \overrightarrow{AB} . Symbols like $\vec{a}, \vec{b}, \vec{c}$ etc. with arrow overhead are used to denote vectors.

TYPES OF VECTORS:

Zero (or null) Vector	:	A vector whose magnitude is 0 (zero) is called a zero vector. It can have any arbitrary direction. For a zero vector the initial and terminal points are coincident.
Proper vector	:	Any vector other than a zero vector is called a proper vector.
Co-initial vectors	:	Vectors are said to be co-initial if they have the same initial point.
Co-terminus vectors	:	Vectors are said to be co-terminus if they have the same terminal point.
Equal vectors	:	Two vectors \vec{a} and \vec{b} are said to be equal if they have equal magnitude and are equally directed and it is written as $\vec{a} = \vec{b}$.
Like vectors	:	Vectors are said to be like if they are equally directed irrespective of their magnitude.
Unlike vectors	:	Vectors are said to be unlike when they have opposite directions irrespective of their magnitude.
Negative of a vectors	:	The vector, which has the same magnitude as the vector \vec{a} but opposite direction, is called the negative of \vec{a} and is denoted by $-\vec{a}$.

Thus if $\overrightarrow{AB} = \overrightarrow{a}$, then $\overrightarrow{BA} = -\overrightarrow{a}$.

Scalar multiplication of a vector: Let *n* be a scalar and \vec{a} be any vector. The product $n\vec{a}$ is a vector, whose magnitude is |n| times that of $|\vec{a}|$ and the direction is same or opposite direction as that of \vec{a} according as n > 0 or n < 0.

Unit vector

: A vector whose magnitude is one is called a unit vector. For any proper vector \vec{a} , $\frac{\vec{a}}{|\vec{a}|}$ is a unit vector in the direction of \vec{a} .

Note:

Usually we use the symbol \hat{a} (a cap) to denote a unit vector.

Thus
$$\hat{a} = \frac{\vec{a}}{|\vec{a}|}$$

 $\Rightarrow |\vec{a}| \hat{a} = \vec{a}$
 $\Rightarrow a.\hat{a} = \vec{a}$

Reciprocal of a vector	:	For any proper vector a , the vector having the same direction as that of a
		but whose magnitude is the reciprocal of the magnitude of \vec{a} is called the
		reciprocal vector of \vec{a} .
Note	:	The Vector $\frac{\vec{a}}{a^2}$ is the reciprocal of \vec{a} .
Free vectors	:	A vectors whose initial point is not specified but whose magnitude and
		direction are known is called free vector.
Localized vectors	:	A vector drawn parallel to a given vector, but through a specified point as
		initial point, is called localized vector.
Position vectors	:	The vector identifying the position of a point P in space with reference to a
		particular point is called the position vector of the point P . In general, we
		take the origin O in the system of Cartesian co-ordinates as the point of
		reference. Thus the vector \vec{r} is given by $\vec{r} = \vec{OP}$ is the position vector of
		Р.

Addition of two vectors:

Let $\vec{a} = \overrightarrow{AB}$ and $\vec{b} = \overrightarrow{LM}$ be two vectors as shown in the fig. To find the sum of \vec{a} and \vec{b} , we draw $\overrightarrow{BC} = \overrightarrow{LM} = \vec{b}$ such that the initial point of \overrightarrow{BC} is the terminal point of \overrightarrow{AB} .

If
$$\overrightarrow{AC} = \overrightarrow{c}$$
 then it is defined as the sum of \overrightarrow{a}
and \overrightarrow{b} and we write $\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{c}$ \overrightarrow{b}
Or $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ L A \overrightarrow{a} B

a

This is also referred to as the triangle law of vectors addition.

Parallelogram law of vectors addition:

The sum of vectors \vec{a} and \vec{b} can also be obtained by bringing the initial points of \vec{a} and \vec{b} together and then completing the parallelogram OABC, the diagonal \overrightarrow{OB} which is co-initial with \vec{a} and \vec{b} is sum of \vec{a} and \vec{b} .

 $\vec{c} = \vec{a} + \vec{b}$

Governm

i.e. $\vec{a} + \vec{b} = \vec{c}$

 $\overrightarrow{OA} + \overrightarrow{OC} = \overrightarrow{OB}$

Deductions:

1. Vector addition is commutative: For any two vectors \vec{a} and \vec{b}

$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$

2. Vector addition is associative: For any three vectors \vec{a} , \vec{b} and \vec{c}

$$\left(\vec{a}+\vec{b}\right)+\vec{c}=\vec{a}+\left(\vec{b}+\vec{c}\right)$$

3. For any two vectors \vec{a} and \vec{b} , $|\vec{a} + \vec{b}| \le |\vec{a}| + |\vec{b}|$.

EDUCATION (S)

Subtraction of vectors: В In fig. \overrightarrow{OA} is the vector \vec{a} and $\overrightarrow{LM} = \vec{b}$. $a + \vec{b}$ Μ We draw $\overrightarrow{AB} = \overrightarrow{LM}$ so that $\overrightarrow{AB} = \overrightarrow{b}$. \vec{b} b Now $\overrightarrow{OB} = \overrightarrow{a} + \overrightarrow{b}$ 0 A а To find $\vec{a} + (-\vec{b})$ i.e. $\vec{a} - \vec{b}$ we draw $-\vec{h}$ ā--b $AB' = -\overrightarrow{LM}$ reversing the direction of \vec{b} but equal in magnitude. \mathbf{R}'

So that
$$AB' = -\vec{b}$$

Then $\overrightarrow{OB'} = \overrightarrow{a} - \overrightarrow{b}$

Notes: 1) If \vec{a} and \vec{b} are perpendicular, then $|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$.

2) Like algebraic quantities vectors can be transported across the sign of equality.

0

В

a

i.e. if $\vec{a} + \vec{b} = \vec{c}$, then $\vec{a} = \vec{c} - \vec{b}$.

3) Distributive law of scalar multiplication: $m(\vec{a} + \vec{b}) = m\vec{a} + m\vec{b}$.

Representation of a vector in terms of position vectors of its end points:

Let \vec{a} and \vec{b} be the position vectors of points A and B respectively. Then, $\overrightarrow{OA} = \vec{a}$,

$$\overrightarrow{OB} = \overrightarrow{b}$$

In $\triangle OAB$, we have

$$\overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OB}$$

$$\Rightarrow \overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \overrightarrow{b} - \overrightarrow{a}$$

 $\Rightarrow \overrightarrow{AB} =$ (Position vector of B)

 $\Rightarrow \overrightarrow{AB} =$ (Position vector of head) – (Position vector of tail)

(II. (T)) EDUCATION (S)

А

SECTION FORMULA:

Theorem 1 (Internal Division): Let A and B be the two points with position vectors \vec{a} and \vec{b} respectively, and let C be a point dividing AB internally in the ratio m:n. Then the position vector

of *C* is given by
$$\frac{m\vec{b} + n\vec{a}}{m+n}$$

Proof: Let *O* be the origin of reference, then $\overrightarrow{OA} = \vec{a}$ and $\overrightarrow{OB} = \vec{b}$.

Let \vec{c} be the position vector of C which divides AB internally in the ratio of m:n. Then

$$\frac{AC}{CB} = \frac{m}{n}$$

$$\Rightarrow n.AC = mCB$$

$$\Rightarrow n.\overline{AC} = m\overline{CB}$$

$$\Rightarrow n.\overline{AC} = m\overline{CB}$$

$$\Rightarrow n.\overline{AC} = m\overline{B}$$

$$\Rightarrow n.\overline{AC} = m\overline{B}$$

$$\Rightarrow n.\overline{AC} = m\overline{B}$$

$$\Rightarrow n.\overline{AC} = m\overline{B} + n.\overline{a}$$

$$\Rightarrow (m+n)\overline{c} = m\overline{b} + n.\overline{a}$$

$$\Rightarrow \overline{c} = \frac{m\overline{b} + n.\overline{a}}{m+n} \Rightarrow \overline{OC} = \frac{m\overline{b} + n.\overline{a}}{m+n}$$
Hence the position vector of point C is $\frac{m\overline{b} + n.\overline{a}}{m+n}$
Deduction:

If *C* is the mid-point of AB, then it divides *AB* in the ratio 1:1. Therefore position vector of *C* given by

$$\frac{1.\vec{a}+1.\vec{b}}{1+1} = \frac{\vec{a}+\vec{b}}{2} = \frac{1}{2} \left(\vec{a}+\vec{b}\right)$$

Page | 5