

രൗയ) ഇറംങ്ഷുരു ച് ഈ എംഎന്നിര PEPARTMENT OF EDUCATION (S) Government of Manipur

CHAPTER-1 NUMBER SYSTEM

NOTES

Natural Numbers:	1, 2, 3,
Whole Numbers:	0, 1, 2, 3,
Integers:	, -3, -2, -1, 0, 1, 2, 3,

Rational number \succ

It is a number which can be expressed in the form of $\frac{p}{a}$ where p, q are integers and $q \neq 0$.

- Every natural number is a whole number, every whole number is an integer and every \geq integer is a rational number.
- If a and b are two rational number such that $a \le b$, then $\frac{a+b}{2}$ is a rational number lying \succ between *a* and *b*.
- If $\frac{p}{q}$ and $\frac{r}{s}$ are any two rational numbers and $\frac{p}{q} < \frac{r}{s}$ then $\frac{p}{q} < \frac{p+r}{q+s} < \frac{r}{s}$. \geq
- There are an infinite number of rational numbers between two unequal rational numbers. \succ
- \geq The nth root of a Real number

If x is a positive real number and n is a positive integer then $\sqrt[n]{x} = y$ means $y^n = x$ and y>0. $\sqrt[n]{x}$ is called nth root of the positive number x.

***** Prove that $\sqrt{2}$ is not a rational number.

. integers p a Proof :- Let us suppose that $\sqrt{2}$ is a rational number. Then there exists integers p and q

such that
$$q \neq 0$$
, p, q are co-prime and $\frac{p}{q} = 1$

$$\therefore \left(\frac{p}{q}\right)^2 = (\sqrt{2})^2 \text{ [Squaring both sides]}$$

$$\Rightarrow \frac{p^2}{q^2} = 2$$

$$\Rightarrow \frac{p^2}{q \cdot q} = 2$$

新聞社会研究 ய し 方気 Manipur (ய の) DEPARTMENT OF EDUCATION (S) Government of Manipur

As p and q are co-prime, the left side of (1) is a fraction except for q = 1 but the right side is an integer.

If
$$q = 1, \frac{p^2}{1} = 2 \times 1$$

 $\Rightarrow p^2=2$ in which both sides are integers.

It means that the square of p is 2. But there is no integer whose square is 2.

 $[:: 1^2 < 2 < 2^2]$

So, our supposition that $\sqrt{2}$ is a rational number is contradicted.

Hence $\sqrt{2}$ is not a rational number.

Laws of exponents

If m, n are integers and x, y are non-zero rational numbers, then

i)
$$x^m \times x^n = x^{m+1}$$

ii) $\frac{x^m}{2} = x^{m-n}$

(1)
$$\frac{1}{x^n} = x^{n} + x^{n}$$

iii)
$$(xy)^m = x^m y^n$$

iv)
$$(x^m)^n = x^{mn}$$

The above Laws of exponents hold good when bases are positive real numbers and exponents are rational numbers, positive or negative.

ernment

Show that $x^0=1$ for any non zero rational number x.

Solution:- We know that

$$\frac{x}{x^{n}} = x^{m-n}$$
If $m = n$,

$$\frac{x^{n}}{x^{n}} = x^{n-n}$$

$$\Rightarrow 1 = x^{0}$$

$$\therefore x^{0} = 1$$

m

Show that $x^{-n} = \frac{1}{x^n}$ for any non –zero rational number x.

Solution :- We know that,

 $_{r}m$

$$\frac{x}{x^{n}} = x^{m-n}$$
If $m = 0$,

$$\frac{x^{0}}{x^{n}} = x^{o-n}$$

$$\Rightarrow \frac{1}{x^{n}} = x^{-n}$$

$$\therefore x^{-n} = \frac{1}{x^{n}}$$

EDUCATION (S)

Manipu

新聞社会報でで W を 万万四ので (W の) **DEPARTMENT OF EDUCATION (S)** Government of Manipur

Dedekind-Cantor Axiom

"To every real number there corresponds a unique point on the number line and to every point on the number line there corresponds a unique real number."

> Irrational numbers

Irrational numbers are numbers represented on the number line by points other than those representing rational numbers.

Real numbers: Real numbers are numbers which are either rational or irrational.

Rationalising factor

If the product of two irrational numbers is a rational number then each is called a rationalising factor of the other.

Example: $2 + \sqrt{2}$ and $2 - \sqrt{2}$ are rationalising factor of each other.

For $(2 + \sqrt{2})(2 - \sqrt{2}) = 2^2 - (\sqrt{2})^2 = 4 - 2 = 2$, which is a rational number.

