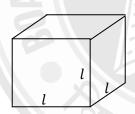
CHAPTER 12 MENSURATION

NOTES

- Area of a triangle = $\frac{1}{2} \times$ base \times altitude
- **Heron's Formula**

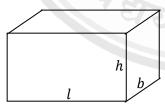

If a, b, c are the lengths of the three sides of a triangle, then

Area of the triangle =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

where $s = \text{semi} - \text{perimeter of the triangle} = \frac{a+b+c}{2}$

Surface Area and Volume of Some Basic Solids

1 Cube



Lateral Surface Area = $4l^2$

Total Surface Area = $6l^2$

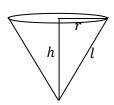
Volume (Capacity) = l^3

2 Cuboid

Lateral Surface Area = 2(l + b)h

 $-2(\omega + bn + hl)$ Volume (Capacity) = lbhTotal Surface Area = 2(lb + bh + hl)

3 **Cylinder**



Curve Surface Area = $2\pi rh$

Total Surface Area = $2\pi r(r + h)$

Volume (Capacity) = $\pi r^2 h$

Cone 4

Slant Height,
$$l = \sqrt{r^2 + h^2}$$

Curve Surface Area =
$$\pi rl$$

Total Surface Area =
$$\pi r(r + l)$$

Volume (Capacity) =
$$\frac{1}{3}\pi r^2 h$$

(००क्र) कर्जन्मध्य उत्त क्रिक क्रमभ्रमभूषा

DEPARTMENT OF EDUCATION (S)

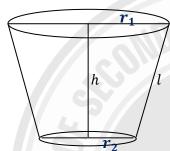
Government of Manipur

5 Sphere

Curve Surface Area =
$$4\pi r^2$$

Volume (Capacity) =
$$\frac{4}{3}\pi r^3$$

6 Hemisphere



Curve Surface Area = $2\pi r^2$

Total Surface Area = $3\pi r^2$

Volume (Capacity) =
$$\frac{2}{3}\pi r^3$$

7 Frustum

Slant Height of a frustum $(l) = \sqrt{(r_1 - r_2)^2 + h^2}$

Curve Surface Area =
$$\pi(r_1 + r_2)l$$

Total Surface Area =
$$\pi[(r_1 + r_2)l + r_1^2 + r_2^2]$$

Surface Area of a Frustum with larger face open

FINTENATION (S)

FOR THE TOPE TOPE (TOP)

OF EDUCATION (S)

OF ARTMENT OF Manipur

Government of Manipur

$$= \pi[(r_1 + r_2)l + r_2^2]$$

Volume =
$$\frac{1}{3}\pi(r_1^2 + r_1 \cdot r_2 + r_2^2)h$$